Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001

Incommensurate Magnetic Ordering in Frustrated UNi₄B

Y. Qiu¹, C. Broholm *1, A. A. Menovsky², J. A. Mydosh²

- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
- ² Kamerling Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands

UNi₄B is a hexagonal intermetalic which orders antiferromagneically at T_N =20 K. It has been proposed that only two thirds of the U spins overcome the geometric frustration and order, while the other one third remain paramagnetic below T_N^{\dagger} . We reinvestigated the structure with elastic neutron scattering at temperatures down to 35mK. We found that the magnetic structure is incommensurate for all T< T_N . While all peaks appear at T_N , there are different temperature dependences for the intensities of the three families of incommensurate magnetic peaks that were identified. The other uranium compound with the hexagonal CaCu₅-derived crystal structure which has an incommensurate magnetic structure is UNi₂Al₃. So far, all the theories on UNi₄B haven't accounted for the incommensurate magnetic structure.

^{*}NIST center for neutron research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

[†]S. A. M. Mentink et al., Phys. Rev. Lett. **73**,1031(1994).